哈希彩票_哈希彩票
哈希彩票2019-10-11

哈希彩票

构建数据基础制度 更好发挥数据要素作用——国家发展改革委负责同志答记者问******

  新华社北京12月19日电题:构建数据基础制度更好发挥数据要素作用——国家发展改革委负责同志答记者问

  新华社记者潘洁

  数据基础制度建设事关国家发展和安全大局。《中共中央国务院关于构建数据基础制度更好发挥数据要素作用的意见》(“数据二十条”)19日对外发布。意见出台的总体考虑是什么?怎样理解其内涵?记者就此采访了国家发展改革委负责同志。

  问:“数据二十条”出台的背景是什么?

  答:数据作为新型生产要素,具有无形性、非消耗性等特点,可以接近零成本无限复制,对传统产权、流通、分配、治理等制度提出新挑战,亟需构建与数字生产力发展相适应的生产关系,不断解放和发展数字生产力。按照党中央、国务院决策部署,国家发展改革委牵头研究起草“数据二十条”,组建跨学科专家队伍,赴多地深入调研,并吸纳了各方面有关意见。习近平总书记主持召开中央全面深化改革委员会第二十六次会议,审议通过了“数据二十条”。

  问:构建数据基础制度体系有哪些重大意义?

  答:构建数据基础制度体系,是新时代我国改革开放事业持续向纵深推进的标志性、全局性、战略性举措,有利于充分发挥数据要素作用,赋能实体经济,推动高质量发展;有利于做强做优做大数字经济,应对科技革命和产业变革,构筑国际竞争新优势;有利于统筹分配效率与公平,推动全民共享数字经济发展红利,促进实现共同富裕;有利于提高数据要素治理效能,助力国家治理体系和治理能力现代化。

  问:怎样理解“数据二十条”的主要内容?

  答:把握一条主线。坚持促进数据合规高效流通使用、赋能实体经济这一主线,以充分实现数据要素价值、促进全体人民共享数字经济发展红利为目标。

  构建四个制度。建立保障权益、合规使用的数据产权制度,探索数据产权结构性分置制度,建立数据资源持有权、数据加工使用权、数据产品经营权“三权分置”的数据产权制度框架;建立合规高效、场内外结合的数据要素流通和交易制度,从规则、市场、生态、跨境等四个方面构建适应我国制度优势的数据要素市场体系;建立体现效率、促进公平的数据要素收益分配制度,在初次分配阶段,按照“谁投入、谁贡献、谁受益”原则,推动数据要素收益向数据价值和使用价值创造者合理倾斜,在二次分配、三次分配阶段,重点关注公共利益和相对弱势群体,防止和依法规制资本在数据领域无序扩张形成市场垄断等各类风险挑战;建立安全可控、弹性包容的数据要素治理制度,构建政府、企业、社会多方协同的治理模式。

  推进四项措施。加强党对构建数据基础制度工作的全面领导;加大政策支持力度,做大做强数据要素型企业;积极鼓励试验探索,支持浙江等地区和有条件的行业、企业先行先试;稳步推进制度建设,逐步完善数据产权界定、数据流通和交易等主要领域关键环节的政策及标准。

  问:“数据二十条”提出数据产权“三权分置”的相关考虑是什么?

  答:在数据生产、流通、使用等过程中,个人、企业、社会、国家等相关主体对数据有着不同利益诉求,且呈现复杂共生、相互依存、动态变化等特点,传统权利制度框架难以突破数据产权困境。

  “数据二十条”以解决市场主体遇到的实际问题为导向,创新数据产权观念,淡化所有权、强调使用权,聚焦数据使用权流通,创造性提出建立数据资源持有权、数据加工使用权和数据产品经营权“三权分置”的数据产权制度框架,构建中国特色数据产权制度体系。

  问:“数据二十条”提出构建多层次数据交易市场体系有什么考虑?

  答:由于数据特性复杂,数据交易存在确权难、定价难、互信难、监管难等挑战。“数据二十条”提出从流通规则、交易市场、服务生态等方面加强数据流通交易顶层设计,建立数据流通准入标准规则,探索开展数据质量标准化体系建设;统筹优化全国数据交易场所规划布局,出台数据交易场所管理办法,构建多层次市场交易体系;培育数据商和第三方专业服务机构两类主体。

  问:下一步,在推动“数据二十条”落实方面有哪些安排?

  答:一是健全政策顶层设计。围绕“数据二十条”不断丰富完善数据要素各方面制度体系和配套政策,打造“1+N”数据基础制度体系。

  二是推进实施试点示范。在有条件的地方和行业开展数据要素流通使用试点示范,推动公共数据、企业数据、个人数据合规高效流通使用,赋能实体经济发展。

  三是培育数据要素市场。构建多层次、多元化数据要素市场生态体系,统筹数据交易市场建设,规范数据交易管理,推进数据交易场所和数据商功能分离。

  四是夯实数据要素基础设施。探索建设全国一体化数据要素登记存证平台,推进数据要素领域创新平台布局,立体化推动“东数西算”工程,形成“算力”和“数据”相结合的数据产业生态体系。

  五是强化数据要素高质量供给。健全完善公共数据授权运营机制,制定促进公共数据开发利用的政策法规,服务社会公共管理,赋能实体经济发展。完善政策工具箱,引导大型央企国企、大型互联网企业加大数据流通使用,赋能中小企业数字化转型。

  六是加强工作整体统筹力度。发挥数字经济发展部际联席会议作用,促进跨地区跨部门跨层级协同联动,定期对数据基础制度建设情况进行评估,适时进行动态调整,推动数据基础制度体系不断丰富完善。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

中国网客户端

国家重点新闻网站,9语种权威发布

哈希彩票地图